Info TOP 20 of the World's Most Powerful CPU Cores - IPC/PPC comparison

Page 16 - Seeking answers? Join the AnandTech community: where nearly half-a-million members share solutions and discuss the latest tech.

Richie Rich

Senior member
Jul 28, 2019
470
230
76
Added cores:
  • A53 - little core used in some low-end smartphones in 8-core config (Snapdragon 450)
  • A55 - used as little core in every modern Android SoC
  • A72 - "high" end Cortex core used in Snapdragon 625 or Raspberry Pi 4
  • A73 - "high" end Cortex core
  • A75 - "high" end Cortex core
  • Bulldozer - infamous AMD core
Geekbench 5.1 PPC chart 6/23/2020:

Pos
Man
CPU
Core
Year
ISA
GB5 Score
GHz
PPC (score/GHz)
Relative to 9900K
Relative to Zen3
1​
Nuvia​
(Est.)​
Phoenix (Est.)​
2021​
ARMv9.0​
2001​
3.00​
667.00​
241.0%​
194.1%​
2​
Apple​
A15 (est.)​
(Est.)​
2021​
ARMv9.0​
1925​
3.00​
641.70​
231.8%​
186.8%​
3​
Apple​
A14 (est.)​
Firestorm​
2020​
ARMv8.6​
1562​
2.80​
558.00​
201.6%​
162.4%​
4​
Apple​
A13​
Lightning​
2019​
ARMv8.4​
1332​
2.65​
502.64​
181.6%​
146.3%​
5​
Apple​
A12​
Vortex​
2018​
ARMv8.3​
1116​
2.53​
441.11​
159.4%​
128.4%​
6​
ARM Cortex​
V1 (est.)​
Zeus​
2020​
ARMv8.6​
1287​
3.00​
428.87​
154.9%​
124.8%​
7​
ARM Cortex​
N2 (est.)​
Perseus​
2021​
ARMv9.0​
1201​
3.00​
400.28​
144.6%​
116.5%​
8​
Apple​
A11​
Monsoon​
2017​
ARMv8.2​
933​
2.39​
390.38​
141.0%​
113.6%​
9​
Intel​
(Est.)​
Golden Cove (Est.)​
2021​
x86-64​
1780​
4.60​
386.98​
139.8%​
112.6%​
10​
ARM Cortex​
X1​
Hera​
2020​
ARMv8.2​
1115​
3.00​
371.69​
134.3%​
108.2%​
11
AMD
5900X (Est.)
Zen 3 (Est.)
2020
x86-64
1683
4.90
343.57
124.1%
100.0%
12​
Apple​
A10​
Hurricane​
2016​
ARMv8.1​
770​
2.34​
329.06​
118.9%​
95.8%​
13​
Intel​
1065G7​
Icelake​
2019​
x86-64​
1252​
3.90​
321.03​
116.0%​
93.4%​
14​
ARM Cortex​
A78​
Hercules​
2020​
ARMv8.2​
918​
3.00​
305.93​
110.5%​
89.0%​
15​
Apple​
A9​
Twister​
2015​
ARMv8.0​
564​
1.85​
304.86​
110.1%​
88.7%​
16
AMD
3950X
Zen 2
2019
x86-64
1317
4.60
286.30
103.4%
83.3%
17​
ARM Cortex​
A77​
Deimos​
2019​
ARMv8.2​
812​
2.84​
285.92​
103.3%​
83.2%​
18​
Intel​
9900K​
Coffee LakeR​
2018​
x86-64​
1384​
5.00​
276.80​
100.0%​
80.6%​
19​
Intel​
10900K​
Comet Lake​
2020​
x86-64​
1465​
5.30​
276.42​
99.9%​
80.5%​
20​
Intel​
6700K​
Skylake​
2015​
x86-64​
1032​
4.00​
258.00​
93.2%​
75.1%​
21​
ARM Cortex​
A76​
Enyo​
2018​
ARMv8.2​
720​
2.84​
253.52​
91.6%​
73.8%​
22​
Intel​
4770K​
Haswell​
2013​
x86-64​
966​
3.90​
247.69​
89.5%​
72.1%​
23​
AMD​
1800X​
Zen 1​
2017​
x86-64​
935​
3.90​
239.74​
86.6%​
69.8%​
24​
Apple​
A13​
Thunder​
2019​
ARMv8.4​
400​
1.73​
231.25​
83.5%​
67.3%​
25​
Apple​
A8​
Typhoon​
2014​
ARMv8.0​
323​
1.40​
230.71​
83.4%​
67.2%​
26​
Intel​
3770K​
Ivy Bridge​
2012​
x86-64​
764​
3.50​
218.29​
78.9%​
63.5%​
27​
Apple​
A7​
Cyclone​
2013​
ARMv8.0​
270​
1.30​
207.69​
75.0%​
60.5%​
28​
Intel​
2700K​
Sandy Bridge​
2011​
x86-64​
723​
3.50​
206.57​
74.6%​
60.1%​
29​
ARM Cortex​
A75​
Prometheus​
2017​
ARMv8.2​
505​
2.80​
180.36​
65.2%​
52.5%​
30​
ARM Cortex​
A73​
Artemis​
2016​
ARMv8.0​
380​
2.45​
155.10​
56.0%​
45.1%​
31​
ARM Cortex​
A72​
Maya​
2015​
ARMv8.0​
259​
1.80​
143.89​
52.0%​
41.9%​
32​
Intel​
E6600​
Core2​
2006​
x86-64​
338​
2.40​
140.83​
50.9%​
41.0%​
33​
AMD​
FX-8350​
BD​
2011​
x86-64​
566​
4.20​
134.76​
48.7%​
39.2%​
34​
AMD​
Phenom 965 BE​
K10.5​
2006​
x86-64​
496​
3.70​
134.05​
48.4%​
39.0%​
35​
ARM Cortex​
A57 (est.)​
Atlas​
0​
ARMv8.0​
222​
1.80​
123.33​
44.6%​
35.9%​
36​
ARM Cortex​
A15 (est.)​
Eagle​
0​
ARMv7 32-bit​
188​
1.80​
104.65​
37.8%​
30.5%​
37​
AMD​
Athlon 64 X2 3800+​
K8​
2005​
x86-64​
207​
2.00​
103.50​
37.4%​
30.1%​
38​
ARM Cortex​
A17 (est.)​
0​
ARMv7 32-bit​
182​
1.80​
100.91​
36.5%​
29.4%​
39​
ARM Cortex​
A55​
Ananke​
2017​
ARMv8.2​
155​
1.60​
96.88​
35.0%​
28.2%​
40​
ARM Cortex​
A53​
Apollo​
2012​
ARMv8.0​
148​
1.80​
82.22​
29.7%​
23.9%​
41​
Intel​
Pentium D​
P4​
2005​
x86-64​
228​
3.40​
67.06​
24.2%​
19.5%​
42​
ARM Cortex​
A7 (est.)​
Kingfisher​
0​
ARMv7 32-bit​
101​
1.80​
56.06​
20.3%​
16.3%​

GB5-PPC-evolution.png

GB5-STperf-evolution.png

TOP10PPC_CPU_frequency_evolution_graph.png



TOP 10 - Performance Per Area comparison at ISO-clock (PPA/GHz)

Copied from locked thread. They try to avoid people to see this comparison how x86 is so bad.[/B]

Pos
Man
CPU
Core
Core Area mm2
Year
ISA
SPEC PPA/Ghz
Relative
1​
ARM Cortex​
A78​
Hercules​
1.33​
2020​
ARMv8​
9.41​
100.0%​
2​
ARM Cortex​
A77​
Deimos​
1.40​
2019​
ARMv8​
8.36​
88.8%​
3​
ARM Cortex​
A76​
Enyo​
1.20​
2018​
ARMv8​
7.82​
83.1%​
4​
ARM Cortex​
X1​
Hera​
2.11​
2020​
ARMv8​
7.24​
76.9%​
5​
Apple​
A12​
Vortex​
4.03​
2018​
ARMv8​
4.44​
47.2%​
6​
Apple​
A13​
Lightning​
4.53​
2019​
ARMv8​
4.40​
46.7%​
7​
AMD​
3950X​
Zen 2​
3.60​
2019​
x86-64​
3.02​
32.1%​



It's impressive how fast are evolving the generic Cortex cores:
  • A72 (2015) which can be found in most SBC has 1/3 of IPC of new Cortex X1 - They trippled IPC in just 5 years.
  • A73 and A75 (2017) which is inside majority of Android smart phones today has 1/2 IPC of new Cortex X1 - They doubled IPC in 3 years.

Comparison how x86 vs. Cortex cores:
  • A75 (2017) compared to Zen1 (2017) is loosing massive -34% PPC to x86. As expected.
  • A77 (2019) compared to Zen2 (2018) closed the gap and is equal in PPC. Surprising. Cortex cores caught x86 cores.
  • X1 (2020) is another +30% IPC over A77. Zen3 need to bring 30% IPC jump to stay on par with X1.

Comparison to Apple cores:
  • AMD's Zen2 core is slower than Apple's A9 from 2015.... so AMD is 4 years behind Apple
  • Intel's Sunny Cove core in Ice Lake is slower than Apple's A10 from 2016... so Intel is 3 years behind Apple
  • Cortex A77 core is slower than Apple's A9 from 2015.... but
  • New Cortex X1 core is slower than Apple's A11 from 2017 so ARM LLC is 3 years behind Apple and getting closer



GeekBench5.1 comparison from 6/22/2020:
  • added Cortex X1 and A78 performance projections from Andrei here
  • 2020 awaiting new Apple A14 Firestorm core and Zen3 core
Updated:



EDIT:
Please note to stop endless discussion about PPC frequency scaling: To have fair and clean comparison I will use only the top (high clocked) version from each core as representation for top performance.
 
Last edited:

gdansk

Diamond Member
Feb 8, 2011
4,415
7,420
136
I can add four data points using GB5 as in the original table

Sources - my own systems here:

Looks like a lot of regressions in this particular metric. Really makes one think.

Edit: I give up trying to fix the table formatting but here is how it's supposed to look
1756073508932.png
 
Last edited:

Doug S

Diamond Member
Feb 8, 2020
3,427
6,072
136
Looks like a lot of regressions in this particular metric. Really makes one think.

Its hardly surprising. Apple can't bump clock rate up by 50% and expect to maintain the same IPC. Latency to cache and DRAM (in wall clock time) is basically the same as it was in 2020, but has increased by 50% in terms of processor cycles. I keep telling people this when I see them expecting big gains in both GHz and IPC from the "next generation" of whatever it is they're anticipating, whether it is 5 GHz Apple/Qualcomm stuff or the fabled 7 GHz Zen 6.
 

Farfle

Member
Jan 10, 2006
85
2
71
Can someone ELI5 what PPC is? I presume it's an efficiency score somehow. Efficiency of what? Die size, energy usage?

P.S. - Plus, I'm really starting to loathe the word "efficiency" as it's used to CPU architectures. It's vague and doesn't describe what it's efficient IN DOING. The word 'efficient' only makes sense in context. As in this post could have been a lot more efficient had I taken the time to re-read it and make it a lot more BRIEF.
 

gdansk

Diamond Member
Feb 8, 2011
4,415
7,420
136
Can someone ELI5 what PPC is? I presume it's an efficiency score somehow. Efficiency of what? Die size, energy usage?

P.S. - Plus, I'm really starting to loathe the word "efficiency" as it's used to CPU architectures. It's vague and doesn't describe what it's efficient IN DOING. The word 'efficient' only makes sense in context. As in this post could have been a lot more efficient had I taken the time to re-read it and make it a lot more BRIEF.
In this case it's just performance per clock.