I Introduction
Global Warming, increase in the average temperature of the atmosphere, oceans, and landmasses of Earth. The planet has warmed (and cooled) many times during the 4.65 billion years of its history. At present Earth appears to be facing a rapid warming, which most scientists believe results, at least in part, from human activities. The chief cause of this warming is thought to be the burning of fossil fuels, such as coal, oil, and natural gas, which releases into the atmosphere carbon dioxide and other substances known as greenhouse gases. As the atmosphere becomes richer in these gases, it becomes a better insulator, retaining more of the heat provided to the planet by the Sun.
The average surface temperature of Earth is just below 15°C (59°F). Over the last century, this average has risen by about 0.6 Celsius degree (1 Fahrenheit degree). Scientists predict further warming of 1.4 to 5.8 Celsius degrees (2.5 to 10.4 Fahrenheit degrees) by the year 2100. This temperature rise is expected to melt polar ice caps and glaciers as well as warm the oceans, all of which will expand ocean volume and raise sea level by an estimated 9 to 100 cm (4 to 40 in), flooding some coastal regions and even entire islands. Some regions in warmer climates will receive more rainfall than before, but soils will dry out faster between storms. This soil desiccation may damage food crops, disrupting food supplies in some parts of the world. Plant and animal species will shift their ranges toward the poles or to higher elevations seeking cooler temperatures, and species that cannot do so may become extinct. The potential consequences of global warming are so great that many of the world's leading scientists have called for international cooperation and immediate action to counteract the problem.
II The Greenhouse Effect
The energy that lights and warms Earth comes from the Sun. Most of the energy that floods onto our planet is short-wave radiation, including visible light. When this energy strikes the surface of Earth, the energy changes from light to heat and warms Earth. Earth?s surface, in turn, releases some of this heat as long-wave infrared radiation.
Much of this long-wave infrared radiation makes it all the way back out to space, but a portion remains trapped in Earth?s atmosphere. Certain gases in the atmosphere, including water vapor, carbon dioxide, and methane, provide the trap. Absorbing and reflecting infrared waves radiated by Earth, these gases conserve heat as the glass in a greenhouse does and are thus known as greenhouse gases. As the concentration of these greenhouse gases in the atmosphere increases, more heat energy remains trapped below. All life on Earth relies on this greenhouse effect?without it, the planet would be colder by about 33 Celsius degrees (59 Fahrenheit degrees), and ice would cover Earth from pole to pole. However, a growing excess of greenhouse gases in Earth?s atmosphere threatens to tip the balance in the other direction?toward continual warming.
III Types of Greenhouse Gases
Greenhouse gases occur naturally in the environment and also result from human activities. By far the most abundant greenhouse gas is water vapor, which reaches the atmosphere through evaporation from oceans, lakes, and rivers.
Carbon dioxide is the next most abundant greenhouse gas. It flows into the atmosphere from many natural processes, such as volcanic eruptions; the respiration of animals, which breathe in oxygen and exhale carbon dioxide; and the burning or decay of organic matter, such as plants. Carbon dioxide leaves the atmosphere when it is absorbed into ocean water and through the photosynthesis of plants, especially trees. Photosynthesis breaks up carbon dioxide, releasing oxygen into the atmosphere and incorporating the carbon into new plant tissue.
Humans escalate the amount of carbon dioxide released to the atmosphere when they burn fossil fuels, solid wastes, and wood and wood products to heat buildings, drive vehicles, and generate electricity. At the same time, the number of trees available to absorb carbon dioxide through photosynthesis has been greatly reduced by deforestation, the long-term destruction of forests by indiscriminate cutting of trees for lumber or to clear land for agricultural activities.
Ultimately, the oceans and other natural processes absorb excess carbon dioxide in the atmosphere. However, human activities have caused carbon dioxide to be released to the atmosphere at rates much faster than that at which Earth?s natural processes can cycle this gas. In 1750 there were about 281 molecules of carbon dioxide per million molecules of air (abbreviated as parts per million, or ppm). In 2006 two major scientific organizations?the World Meteorological Organization (WMO) and the United States National Oceanic and Atmospheric Administration (NOAA)?reported that levels of carbon dioxide in the atmosphere had hit a record high. Using different measurement techniques, the WMO said carbon dioxide levels had risen to 377 ppm, an annual increase of 1.8 ppm, and the NOAA reported a figure of 381 ppm for a yearly increase of 2.6 ppm. If current predictions prove accurate, by the year 2100 carbon dioxide will reach concentrations of more than 540 to 970 ppm. At the highest estimation, this concentration would be triple the levels prior to the Industrial Revolution, the widespread replacement of human labor by machines that began in Britain in the mid-18th century and soon spread to other parts of Europe and to the United States.
.
.
(article continues)