Regression Statistics
Multiple R 0.998549946
R Square 0.997101995
Adjusted R Square 0.995411493
Standard Error 1.553187767
Observations 20
ANOVA
df SS MS F Significance F
Regression 7 9960.236793 1422.89097 589.8257121 2.93494E-14
Residual 12 28.94870687 2.41239224
Total 19 9989.1855
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 16.54794708 9.453493918 1.75045832 0.105537828 -4.04944673 37.14534089 -4.04944673 37.14534089
col2 0.358128136 0.262328459 1.3651898 0.197240936 -0.213436475 0.929692747 -0.213436475 0.929692747
col3 0.277825795 0.161904067 1.715990219 0.111842711 -0.074932863 0.630584453 -0.074932863 0.630584453
col4 -0.201387607 0.271910508 -0.740639295 0.473156004 -0.793829709 0.391054495 -0.793829709 0.391054495
col5 0.093030658 0.039491549 2.355710565 0.036333587 0.006985966 0.179075351 0.006985966 0.179075351
col6 0.404645413 0.280207411 1.444092473 0.174310969 -0.205874088 1.015164913 -0.205874088 1.015164913
col7 -0.243703564 0.17985855 -1.354973474 0.20038499 -0.63558168 0.148174552 -0.63558168 0.148174552
col8 0.155194397 0.099103288 1.565986353 0.143329223 -0.060733119 0.371121912 -0.060733119 0.371121912
So.... the higher the T-stat, the less fits or the more it fits into the regression? P value? Should I pull any of the columns? I'm trying to establish a relationship.... Fvcking econ....
