The
Nvidia defective chips use a type of bump called high lead, and are now transitioning to a type called eutectic, see
here and
here. Eutectic materials have two important properties, they have a low melting point, and all components crystallize at the same temperature. This means they are easier to work with, and form a good solid bond. Eutectic bumps may have lead in them, or they may not, some are gold/tin, other are lead based, it depends on what characteristics you want, and how much you want to pay. It is a property, not a formula.
Most if not all substrates use eutectic pads to attach the bumps to as well. If you use a eutectic pad with a eutectic bump, you get a much better connection than you do if you use a high-lead bump with a eutectic pad. This is reflected in much higher yields, lower assembly costs, and a physically stronger connection as well. At this time, we have no good explanation as to why Nvidia chose to go the high-lead bump on eutectic pad route.
High-lead bumps have a much higher current capacity than eutectic bumps. When power is run through eutectic bumps, you also get an effect called electromigration. This means that some of the materials are essentially pushed around by the current, and you get voids in the bump. These voids lessen the capacity of the bump, and eventually they burn out.