Some speculation about that Larrabee die shot
Happily, with no more information than that, we can tentatively pretend to start handicapping this chip's possible graphics power. We know Larrabee cores have 16-wide vector processing units, so 32 of them would yield a total of 512 operations per clock. The RV770/790 has 160 five-wide execution units for 800 ops per clock, and the GT200/b has 240 scalar units, for 240 ops/clock. Of course, that's not the whole story. The GT200/b is designed to run at higher clock frequencies than the RV770/790, and its scalar execution units should be more fully utilized, to name two of several considerations. Also, Larrabee cores are dual-issue capable, with a separate scalar execution unit.
If I'm right about the identity of the texture and memory blocks, and if they are done in the usual way for today's GPUs (quite an assumption, I admit), then this chip should have eight texture units capable of filtering four texels per clock, for a total of 32 tpc, along with four 64-bit memory interfaces. I'd assume we're looking at GDDR5 memory, which would mean four transfers per clock over that 256-bit (aggregate) memory interface.
All of which brings us closer to some additional guessing about likely clock speeds. Today's GPUs range from around 700 to 1500MHz, if you count GT200/b shader clocks. G92 shader clocks range up to nearly 1.9GHz. But Larrabee is expected to be produced on Intel's 45nm fab process, which offers higher switching speeds than the usual 55/65nm TSMC process used by Nvidia and AMD. Penryn and Nehalem chips have made it to ~3.4GHz on Intel's 45nm tech. At the other end of the spectrum, the low-power Atom tends to run comfortably at 1.6GHz. I'd expect Larrabee to fall somewhere in between.
Where, exactly? Tough to say. I've got to think we're looking at somewhere between 1.5 and 2.5GHz. Assuming we were somehow magically right about everything, and counting on a MADD instruction to enable a peak of two FLOPS per clock, that would mean the Larrabee chip in this die shot could line up something like this:
http://techreport.com/discussions.x/16920