1.One direction is obvious: if the homomorphism is onto then its range is the codomain and so its rank equals the dimension of its codomain. For the other direction assume that the map's rank equals the dimension of the codomain. Then the map's range is a subspace of the codomain, and has dimension equal to the dimension of the codomain. Therefore, the map's range must equal the codomain, and the map is onto. (The "therefore" is because there is a linearly independent subset of the range that is of size equal to the dimension of the codomain, but any such linearly independent subset of the codomain must be a basis for the codomain, and so the range equals the codomain.)