a. p->q
b. r->s
c. (q^s)->(t v u)
d. p
e. r
f. ~t
1. p -> q (premise a)
p (premise d)
therefore q (Modus Ponens)
2. r-> s (premise b)
r (premise e)
therefore s (Modus Ponens)
3. q (1)
s (2)
therefore q^s (conjunction)
4. (q^s)->(t v u) (premise c)
(q^s) (3)
therefore (t v u) (Modus Ponens)
5. (t v u) (4)
~t (premise f)
therefore u (elimination)
Problem #6
1. p -> q Premise
2. ~q V r Premise
3. ~s -> ~r Premise
4. ~(s ^ ~t) Premise
5. p Premise
6. q Modus Ponens (1, 5)
7. r Elimination (2,6)
8. s Modus Tollens (3,7)
9. (~s ^ t) Distributive (4--can i do this?)
10. t Disjunctive Inference (8,9)
does that work?