Hydrogen is generated spontaneously when water is added to pellets of the alloy, which is made of aluminum and a metal called gallium. The researchers have shown how hydrogen is produced when water is added to a small tank containing the pellets. Hydrogen produced in such a system could be fed directly to an engine, such as those on lawn mowers.
"When water is added to the pellets, the aluminum in the solid alloy reacts because it has a strong attraction to the oxygen in the water," Woodall said.
This reaction splits the oxygen and hydrogen contained in water, releasing hydrogen in the process.
The gallium is critical to the process because it hinders the formation of a skin normally created on aluminum's surface after oxidation. This skin usually prevents oxygen from reacting with aluminum, acting as a barrier. Preventing the skin's formation allows the reaction to continue until all of the aluminum is used.
The Purdue Research Foundation holds title to the primary patent, which has been filed with the U.S. Patent and Trademark Office and is pending. An Indiana startup company, AlGalCo LLC., has received a license for the exclusive right to commercialize the process.
The research has been supported by the Energy Center at Purdue's Discovery Park, the university's hub for interdisciplinary research.
"This is exactly the kind of project that suits Discovery Park. It's exciting science that has great potential to be commercialized," said Jay Gore, associate dean of engineering for research, the Energy Center's interim director and the Vincent P. Reilly Professor of Mechanical Engineering.
The research team is made up of electrical, mechanical, chemical and aeronautical engineers, including doctoral students.
Woodall discovered that liquid alloys of aluminum and gallium spontaneously produce hydrogen if mixed with water while he was working as a researcher in the semiconductor industry in 1967. The research, which focused on developing new semiconductors for computers and electronics, led to advances in optical-fiber communications and light-emitting diodes, making them practical for everything from DVD players to automotive dashboard displays. That work also led to development of advanced transistors for cell phones and components in solar cells powering space modules like those used on the Mars rover, earning Woodall the 2001 National Medal of Technology from President George W. Bush.
"I was cleaning a crucible containing liquid alloys of gallium and aluminum," Woodall said. "When I added water to this alloy - talk about a discovery - there was a violent poof. I went to my office and worked out the reaction in a couple of hours to figure out what had happened. When aluminum atoms in the liquid alloy come into contact with water, they react, splitting the water and producing hydrogen and aluminum oxide.
"Gallium is critical because it melts at low temperature and readily dissolves aluminum, and it renders the aluminum in the solid pellets reactive with water. This was a totally surprising discovery, since it is well known that pure solid aluminum does not readily react with water."
The waste products are gallium and aluminum oxide, also called alumina. Combusting hydrogen in an engine produces only water as waste.
"No toxic fumes are produced," Woodall said. "It's important to note that the gallium doesn't react, so it doesn't get used up and can be recycled over and over again. The reason this is so important is because gallium is currently a lot more expensive than aluminum. Hopefully, if this process is widely adopted, the gallium industry will respond by producing large quantities of the low-grade gallium required for our process. Currently, nearly all gallium is of high purity and used almost exclusively by the semiconductor industry."