- Apr 20, 2018
- 4
- 0
- 11
Bandwidth test: test memory bandwidth.
Especially important for PCIE capability. Different MB has different PCIE capability.
The CUDA adaptor performance is depend on the capability of PCIE. It could be the performance bottleneck.
On the following programming drills, the number of clock cycles necessary for computation and utilised memory bandwidth have to be reported.
(1) parallelization in the programs - using 256 threads
(2) improving the memory access modes
(3) testing the parallelization by using 512/1024
(4) utilizing BLOCKS in the computation
(5) utilizing shared memory
(6) improving the computation performance by using a Treesum algorithm
(7) resolving the memory band conflict issue, encountered in applying Treesum algorithm with the shared memory
My Cuda sample -
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <time.h>
#include <math.h>
#define DATA_SIZE 1048576
#define BLOCK_NUM 32
#define THREAD_NUM 256
int data[DATA_SIZE];
bool InitCUDA()
{
int count;
cudaGetDeviceCount(&count);
if (count == 0)
{
fprintf(stderr, "There is no device.\n");
return false;
}
int i;
for (i = 0; i < count; i++)
{
cudaDeviceProp prop;
if (cudaGetDeviceProperties(&prop, i) == cudaSuccess)
{
if (prop.major >= 1)
{
break;
}
}
cudaSetDevice(i);
}
return true;
}
__global__ static void sumOfSquares(int *num, int* result, clock_t* time)
{
const int tid = threadIdx.x;
const int size = DATA_SIZE / THREAD_NUM;
int sum = 0;
int i;
clock_t start;
if (tid == 0) start = clock();
for (i = tid * size; i < (tid + 1) * size; i++)
{
sum += num * num;
}
result[tid] = sum;
if (tid == 0) *time = clock() - start;
}
int* gpudata, *result;
clock_t* time;
cudaMalloc((void**)&gpudata, sizeof(int)* DATA_SIZE);
cudaMalloc((void**)&result, sizeof(int)* THREAD_NUM);
cudaMalloc((void**)&time, sizeof(clock_t));
cudaMemcpy(gpudata, data, sizeof(int)* DATA_SIZE, cudaMemcpyHostToDevice);
sumOfSquares << <1, THREAD_NUM, 0 >> >(gpudata, result, time);
int sum[THREAD_NUM];
clock_t time_used;
cudaMemcpy(&sum, result, sizeof(int)* THREAD_NUM, cudaMemcpyDeviceToHost);
cudaMemcpy(&time_used, time, sizeof(clock_t), cudaMemcpyDeviceToHost);
cudaFree(gpudata);
cudaFree(result);
cudaFree(time);
int final_sum = 0;
for (int i = 0; i < THREAD_NUM; i++)
{
final_sum += sum;
}
printf("sum: %d time: %d\n", final_sum, time_used);
final_sum = 0;
for (int i = 0; i< DATA_SIZE; i++)
{
sum += data * data;
}
printf("sum (CPU): %d\n", final_sum);
__global__ static void sumOfSquares(int *num, int* result, clock_t* time)
{
const int tid = threadIdx.x;
int sum = 0;
int i;
clock_t start;
if (tid == 0) start = clock();
for (i = tid; i< DATA_SIZE; i += THREAD_NUM)
{
sum += num * num;
}
result[tid] = sum;
if (tid == 0) *time = clock() - start;
}
__global__ static void sumOfSquares(int *num, int* result, clock_t* time)
{
const int tid = threadIdx.x;
const int bid = blockIdx.x;
int sum = 0;
int i;
if (tid == 0) time[bid] = clock();
for (i = bid * THREAD_NUM + tid; i< DATA_SIZE; i += BLOCK_NUM * THREAD_NUM)
{
sum += num * num;
}
result[bid * THREAD_NUM + tid] = sum;
if (tid == 0) time[bid + BLOCK_NUM] = clock();
}
int* gpudata, *result;
clock_t* time;
cudaMalloc((void**)&gpudata, sizeof(int)* DATA_SIZE);
cudaMalloc((void**)&result, sizeof(int)* THREAD_NUM * BLOCK_NUM);
cudaMalloc((void**)&time, sizeof(clock_t)* BLOCK_NUM * 2);
cudaMemcpy(gpudata, data, sizeof(int)* DATA_SIZE, cudaMemcpyHostToDevice);
sumOfSquares << <BLOCK_NUM, THREAD_NUM, 0 >> >(gpudata, result, time);
int sum[THREAD_NUM * BLOCK_NUM];
clock_t time_used[BLOCK_NUM * 2];
cudaMemcpy(&sum, result, sizeof(int)* THREAD_NUM * BLOCK_NUM, cudaMemcpyDeviceToHost);
cudaMemcpy(&time_used, time, sizeof(clock_t)* BLOCK_NUM * 2, cudaMemcpyDeviceToHost);
cudaFree(gpudata);
cudaFree(result);
cudaFree(time);
intfinal_sum = 0;
for (inti = 0; i< THREAD_NUM * BLOCK_NUM; i++)
{
final_sum += sum;
}
clock_t min_start, max_end;
min_start = time_used[0];
max_end = time_used[BLOCK_NUM];
for (inti = 1; i< BLOCK_NUM; i++)
{
if (min_start > time_used)min_start = time_used;
if (max_end < time_used[i + BLOCK_NUM])max_end = time_used[i + BLOCK_NUM];
}
printf("sum: %d time: %d\n", final_sum, max_end - min_start);
__global__ static void sumOfSquares(int *num, int* result, clock_t* time)
{
extern __shared__ int shared[];
const int tid = threadIdx.x;
const int bid = blockIdx.x;
int i;
if (tid == 0) time[bid] = clock();
shared[tid] = 0;
for (i = bid * THREAD_NUM + tid; i< DATA_SIZE; i += BLOCK_NUM * THREAD_NUM)
{
shared[tid] += num * num;
}
__syncthreads();
if (tid == 0)
{
for (i = 1; i< THREAD_NUM; i++)
{
shared[0] += shared;
}
result[bid] = shared[0];
}
if (tid == 0) time[bid + BLOCK_NUM] = clock();
}
int* gpudata, *result;
clock_t* time;
cudaMalloc((void**)&gpudata, sizeof(int)* DATA_SIZE);
cudaMalloc((void**)&result, sizeof(int)* BLOCK_NUM);
cudaMalloc((void**)&time, sizeof(clock_t)* BLOCK_NUM * 2);
cudaMemcpy(gpudata, data, sizeof(int)* DATA_SIZE, cudaMemcpyHostToDevice);
sumOfSquares << <BLOCK_NUM, THREAD_NUM, THREAD_NUM * sizeof(int) >> >(gpudata, result, time);
int sum[BLOCK_NUM];
clock_t time_used[BLOCK_NUM * 2];
cudaMemcpy(&sum, result, sizeof(int)* BLOCK_NUM, cudaMemcpyDeviceToHost);
cudaMemcpy(&time_used, time, sizeof(clock_t)* BLOCK_NUM * 2, cudaMemcpyDeviceToHost);
cudaFree(gpudata);
cudaFree(result);
cudaFree(time);
int final_sum = 0;
for (int i = 0; i< BLOCK_NUM; i++)
{
final_sum += sum;
}
__global__ static void sumOfSquares(int*num, int* result, clock_t* time)
{
extern __shared__ int shared[];
const int tid = threadIdx.x;
const int bid = blockIdx.x;
int i;
into ffset = 1, mask = 1;
if (tid == 0) time[bid] = clock();
shared[tid] = 0;
for (i = bid * THREAD_NUM + tid; i< DATA_SIZE; i += BLOCK_NUM * THREAD_NUM)
{
shared[tid] += num * num;
}
__syncthreads();
while (offset < THREAD_NUM)
{
if ((tid& mask) == 0)
{
shared[tid] += shared[tid + offset];
}
offset += offset;
mask = offset + mask;
__syncthreads();
}
if (tid == 0)
{
result[bid] = shared[0];
time[bid + BLOCK_NUM] = clock();
}
}
offset = THREAD_NUM / 2;
while (offset > 0)
{
if (tid< offset)
{
shared[tid] += shared[tid + offset];
}
offset >>= 1;
__syncthreads();
}
if (tid < 128)
{
shared[tid] += shared[tid + 128];
}
__syncthreads();
if (tid < 64)
{
shared[tid] += shared[tid + 64];
}
__syncthreads();
if (tid < 32)
{
shared[tid] += shared[tid + 32];
}
__syncthreads();
if (tid < 16)
{
shared[tid] += shared[tid + 16];
}
__syncthreads();
if (tid < 8)
{
shared[tid] += shared[tid + 8];
}
__syncthreads();
if (tid < 4)
{
shared[tid] += shared[tid + 4];
}
__syncthreads();
if (tid < 2)
{
shared[tid] += shared[tid + 2];
}
__syncthreads();
if (tid < 1)
{
shared[tid] += shared[tid + 1];
}
__syncthreads();
Some problems over here but not sure how to modify it
Locked as a duplicate of this thread - Programming Moderator Ken g6
Especially important for PCIE capability. Different MB has different PCIE capability.
The CUDA adaptor performance is depend on the capability of PCIE. It could be the performance bottleneck.
On the following programming drills, the number of clock cycles necessary for computation and utilised memory bandwidth have to be reported.
(1) parallelization in the programs - using 256 threads
(2) improving the memory access modes
(3) testing the parallelization by using 512/1024
(4) utilizing BLOCKS in the computation
(5) utilizing shared memory
(6) improving the computation performance by using a Treesum algorithm
(7) resolving the memory band conflict issue, encountered in applying Treesum algorithm with the shared memory
My Cuda sample -
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <time.h>
#include <math.h>
#define DATA_SIZE 1048576
#define BLOCK_NUM 32
#define THREAD_NUM 256
int data[DATA_SIZE];
bool InitCUDA()
{
int count;
cudaGetDeviceCount(&count);
if (count == 0)
{
fprintf(stderr, "There is no device.\n");
return false;
}
int i;
for (i = 0; i < count; i++)
{
cudaDeviceProp prop;
if (cudaGetDeviceProperties(&prop, i) == cudaSuccess)
{
if (prop.major >= 1)
{
break;
}
}
cudaSetDevice(i);
}
return true;
}
__global__ static void sumOfSquares(int *num, int* result, clock_t* time)
{
const int tid = threadIdx.x;
const int size = DATA_SIZE / THREAD_NUM;
int sum = 0;
int i;
clock_t start;
if (tid == 0) start = clock();
for (i = tid * size; i < (tid + 1) * size; i++)
{
sum += num * num;
}
result[tid] = sum;
if (tid == 0) *time = clock() - start;
}
int* gpudata, *result;
clock_t* time;
cudaMalloc((void**)&gpudata, sizeof(int)* DATA_SIZE);
cudaMalloc((void**)&result, sizeof(int)* THREAD_NUM);
cudaMalloc((void**)&time, sizeof(clock_t));
cudaMemcpy(gpudata, data, sizeof(int)* DATA_SIZE, cudaMemcpyHostToDevice);
sumOfSquares << <1, THREAD_NUM, 0 >> >(gpudata, result, time);
int sum[THREAD_NUM];
clock_t time_used;
cudaMemcpy(&sum, result, sizeof(int)* THREAD_NUM, cudaMemcpyDeviceToHost);
cudaMemcpy(&time_used, time, sizeof(clock_t), cudaMemcpyDeviceToHost);
cudaFree(gpudata);
cudaFree(result);
cudaFree(time);
int final_sum = 0;
for (int i = 0; i < THREAD_NUM; i++)
{
final_sum += sum;
}
printf("sum: %d time: %d\n", final_sum, time_used);
final_sum = 0;
for (int i = 0; i< DATA_SIZE; i++)
{
sum += data * data;
}
printf("sum (CPU): %d\n", final_sum);
__global__ static void sumOfSquares(int *num, int* result, clock_t* time)
{
const int tid = threadIdx.x;
int sum = 0;
int i;
clock_t start;
if (tid == 0) start = clock();
for (i = tid; i< DATA_SIZE; i += THREAD_NUM)
{
sum += num * num;
}
result[tid] = sum;
if (tid == 0) *time = clock() - start;
}
__global__ static void sumOfSquares(int *num, int* result, clock_t* time)
{
const int tid = threadIdx.x;
const int bid = blockIdx.x;
int sum = 0;
int i;
if (tid == 0) time[bid] = clock();
for (i = bid * THREAD_NUM + tid; i< DATA_SIZE; i += BLOCK_NUM * THREAD_NUM)
{
sum += num * num;
}
result[bid * THREAD_NUM + tid] = sum;
if (tid == 0) time[bid + BLOCK_NUM] = clock();
}
int* gpudata, *result;
clock_t* time;
cudaMalloc((void**)&gpudata, sizeof(int)* DATA_SIZE);
cudaMalloc((void**)&result, sizeof(int)* THREAD_NUM * BLOCK_NUM);
cudaMalloc((void**)&time, sizeof(clock_t)* BLOCK_NUM * 2);
cudaMemcpy(gpudata, data, sizeof(int)* DATA_SIZE, cudaMemcpyHostToDevice);
sumOfSquares << <BLOCK_NUM, THREAD_NUM, 0 >> >(gpudata, result, time);
int sum[THREAD_NUM * BLOCK_NUM];
clock_t time_used[BLOCK_NUM * 2];
cudaMemcpy(&sum, result, sizeof(int)* THREAD_NUM * BLOCK_NUM, cudaMemcpyDeviceToHost);
cudaMemcpy(&time_used, time, sizeof(clock_t)* BLOCK_NUM * 2, cudaMemcpyDeviceToHost);
cudaFree(gpudata);
cudaFree(result);
cudaFree(time);
intfinal_sum = 0;
for (inti = 0; i< THREAD_NUM * BLOCK_NUM; i++)
{
final_sum += sum;
}
clock_t min_start, max_end;
min_start = time_used[0];
max_end = time_used[BLOCK_NUM];
for (inti = 1; i< BLOCK_NUM; i++)
{
if (min_start > time_used)min_start = time_used;
if (max_end < time_used[i + BLOCK_NUM])max_end = time_used[i + BLOCK_NUM];
}
printf("sum: %d time: %d\n", final_sum, max_end - min_start);
__global__ static void sumOfSquares(int *num, int* result, clock_t* time)
{
extern __shared__ int shared[];
const int tid = threadIdx.x;
const int bid = blockIdx.x;
int i;
if (tid == 0) time[bid] = clock();
shared[tid] = 0;
for (i = bid * THREAD_NUM + tid; i< DATA_SIZE; i += BLOCK_NUM * THREAD_NUM)
{
shared[tid] += num * num;
}
__syncthreads();
if (tid == 0)
{
for (i = 1; i< THREAD_NUM; i++)
{
shared[0] += shared;
}
result[bid] = shared[0];
}
if (tid == 0) time[bid + BLOCK_NUM] = clock();
}
int* gpudata, *result;
clock_t* time;
cudaMalloc((void**)&gpudata, sizeof(int)* DATA_SIZE);
cudaMalloc((void**)&result, sizeof(int)* BLOCK_NUM);
cudaMalloc((void**)&time, sizeof(clock_t)* BLOCK_NUM * 2);
cudaMemcpy(gpudata, data, sizeof(int)* DATA_SIZE, cudaMemcpyHostToDevice);
sumOfSquares << <BLOCK_NUM, THREAD_NUM, THREAD_NUM * sizeof(int) >> >(gpudata, result, time);
int sum[BLOCK_NUM];
clock_t time_used[BLOCK_NUM * 2];
cudaMemcpy(&sum, result, sizeof(int)* BLOCK_NUM, cudaMemcpyDeviceToHost);
cudaMemcpy(&time_used, time, sizeof(clock_t)* BLOCK_NUM * 2, cudaMemcpyDeviceToHost);
cudaFree(gpudata);
cudaFree(result);
cudaFree(time);
int final_sum = 0;
for (int i = 0; i< BLOCK_NUM; i++)
{
final_sum += sum;
}
__global__ static void sumOfSquares(int*num, int* result, clock_t* time)
{
extern __shared__ int shared[];
const int tid = threadIdx.x;
const int bid = blockIdx.x;
int i;
into ffset = 1, mask = 1;
if (tid == 0) time[bid] = clock();
shared[tid] = 0;
for (i = bid * THREAD_NUM + tid; i< DATA_SIZE; i += BLOCK_NUM * THREAD_NUM)
{
shared[tid] += num * num;
}
__syncthreads();
while (offset < THREAD_NUM)
{
if ((tid& mask) == 0)
{
shared[tid] += shared[tid + offset];
}
offset += offset;
mask = offset + mask;
__syncthreads();
}
if (tid == 0)
{
result[bid] = shared[0];
time[bid + BLOCK_NUM] = clock();
}
}
offset = THREAD_NUM / 2;
while (offset > 0)
{
if (tid< offset)
{
shared[tid] += shared[tid + offset];
}
offset >>= 1;
__syncthreads();
}
if (tid < 128)
{
shared[tid] += shared[tid + 128];
}
__syncthreads();
if (tid < 64)
{
shared[tid] += shared[tid + 64];
}
__syncthreads();
if (tid < 32)
{
shared[tid] += shared[tid + 32];
}
__syncthreads();
if (tid < 16)
{
shared[tid] += shared[tid + 16];
}
__syncthreads();
if (tid < 8)
{
shared[tid] += shared[tid + 8];
}
__syncthreads();
if (tid < 4)
{
shared[tid] += shared[tid + 4];
}
__syncthreads();
if (tid < 2)
{
shared[tid] += shared[tid + 2];
}
__syncthreads();
if (tid < 1)
{
shared[tid] += shared[tid + 1];
}
__syncthreads();
Some problems over here but not sure how to modify it
Locked as a duplicate of this thread - Programming Moderator Ken g6
Last edited by a moderator: