Quick overview for why this is important.
Quantum States
We have seen that there are two clear notions of state in classical mechanics: ontic states (phase space points) and epistemic states (probability distributions over the ontic states). In quantum theory, we have a different notion of state — the wavefunction — and the question is: should we think of it as an ontic state (more like a phase space point), an epistemic state (more like a probability distribution), or something else entirely?
Here are three possible answers to this question:
1. Wavefunctions are epistemic and there is some underlying ontic state. Quantum mechanics is the statistical theory of these ontic states in analogy with Liouville mechanics.
2. Wavefunctions are epistemic, but there is no deeper underlying reality.
3. Wavefunctions are ontic (there may also be additional ontic degrees of freedom, which is an important distinction but not relevant to the present discussion).
I will call options 1 and 2 psi-epistemic and option 3 psi-ontic. Advocates of option 3 are called psi-ontologists, in an intentional pun coined by Chris Granade. Options 1 and 3 share a conviction of scientific realism, which is the idea that there must be some description of what is going on in reality that is independent of our knowledge of it. Option 2 is broadly anti-realist, although there can be some subtleties here[2].
The theorem in the paper attempts to rule out option 1, which would mean that scientific realists should become psi-ontologists. I am pretty sure that no theorem on Earth could rule out option 2, so that is always a refuge for psi-epistemicists, at least if their psi-epistemic conviction is stronger than their realist one.