- Aug 20, 2000
- 20,577
- 432
- 126
I very liberally snipped away at this long article from The Economist on the basics of the climate change debate. I think it does a good job of educating us laypeople on the basics.
Note: The 'author' of the first graph that explains global energy flows is the IPCC's own Kevin "The fact is that we can't account for the lack of warming at the moment and it is a travesty that we can't" Trenberth. Make of that what you will.
The science of climate change: The clouds of unknowing
Note: The 'author' of the first graph that explains global energy flows is the IPCC's own Kevin "The fact is that we can't account for the lack of warming at the moment and it is a travesty that we can't" Trenberth. Make of that what you will.
The science of climate change: The clouds of unknowing
The Basics
The most relevant part of that universal what-else is the requirement laid down by thermodynamics that, for a planet at a constant temperature, the amount of energy absorbed as sunlight and the amount emitted back to space in the longer wavelengths of the infra-red must be the same. In the case of the Earth, the amount of sunlight absorbed is 239 watts per square metre. According to the laws of thermodynamics, a simple body emitting energy at that rate should have a temperature of about –18ºC.
You do not need a comprehensive set of surface-temperature data to notice that this is not the average temperature at which humanity goes about its business. The discrepancy is due to greenhouse gases in the atmosphere, which absorb and re-emit infra-red radiation, and thus keep the lower atmosphere, and the surface, warm (see the diagram below). The radiation that gets out to the cosmos comes mostly from above the bulk of the greenhouse gases, where the air temperature is indeed around –18ºC.
![]()
Adding to those greenhouse gases in the atmosphere makes it harder still for the energy to get out. As a result, the surface and the lower atmosphere warm up. This changes the average temperature, the way energy moves from the planet’s surface to the atmosphere above it and the way that energy flows from equator to poles, thus changing the patterns of the weather.
No one doubts that carbon dioxide is a greenhouse gas, good at absorbing infra-red radiation. It is also well established that human activity is putting more of it into the atmosphere than natural processes can currently remove. Measurements made since the 1950s show the level of carbon dioxide rising year on year, from 316 parts per million (ppm) in 1959 to 387ppm in 2009. Less direct records show that the rise began about 1750, and that the level was stable at around 280ppm for about 10,000 years before that.
This fits with human history: in the middle of the 18th century people started to burn fossil fuels in order to power industrial machinery. Analysis of carbon isotopes, among other things, shows that the carbon dioxide from industry accounts for most of the build-up in the atmosphere.
The serious disagreements start when discussion turns to the level of warming associated with that rise in carbon dioxide. For various reasons, scientists would not expect temperatures simply to rise in step with the carbon dioxide (and other greenhouse gases). The climate is a noisy thing, with ups and downs of its own that can make trends hard to detect.
What’s more, the oceans can absorb a great deal of heat—and there is evidence that they have done so—and in storing heat away, they add inertia to the system. This means that the atmosphere will warm more slowly than a given level of greenhouse gas would lead you to expect.
![]()
The Complications
For many, the facts that an increase in carbon dioxide should produce warming, and that warming is observed in a number of different indicators and measurements, add up to a primafacie case for accepting that greenhouse gases are warming the Earth and that the higher levels of greenhouse gases that business as usual would bring over the course of this century would warm it a lot further.
The warming caused by a given increase in carbon dioxide can be calculated on the basis of laboratory measurements which show how much infra-red radiation at which specific wavelengths carbon dioxide molecules absorb. This sort of work shows that if you double the carbon dioxide level you get about 1ºC of warming. So the shift from the pre-industrial 280ppm to 560ppm, a level which on current trends might be reached around 2070, makes the world a degree warmer. If the level were to double again, to 1,100ppm, which seems unlikely, you would get another degree.
The amount of warming expected for a doubling of carbon dioxide has become known as the “climate sensitivity”—and a climate sensitivity of one degree would be small enough to end most climate-related worries. But carbon dioxide’s direct effect is not the only thing to worry about. Several types of feedback can amplify its effect. The most important involve water vapour, which is now quite well understood, and clouds, which are not. It is on these areas that academic doubters tend to focus.
As carbon dioxide warms the air it also moistens it, and because water vapour is a powerful greenhouse gas, that will provide further warming. Other things people do—such as clearing land for farms, and irrigating them—also change water vapour levels, and these can be significant on a regional level. But the effects are not as large.
Climate doubters raise various questions about water vapour, some trivial, some serious. A trivial one is to argue that because water vapour is such a powerful greenhouse gas, carbon dioxide is unimportant. But this ignores the fact that the level of water vapour depends on temperature. A higher level of carbon dioxide, by contrast, governs temperature, and can endure for centuries.
The Models
It is at this point that detailed computer models of the climate need to be called into play. These models slice the atmosphere and oceans into stacks of three-dimensional cells. The state of the air (temperature, pressure, etc) within each cell is continuously updated on the basis of what its state used to be, what is going on in adjacent cells and the greenhousing and other properties of its contents.
These models are phenomenally complex. They are also gross oversimplifications. The size of the cells stops them from explicitly capturing processes that take place at scales smaller than a hundred kilometres or so, which includes the processes that create clouds.
Despite their limitations, climate models do capture various aspects of the real world’s climate: seasons, trade winds, monsoons and the like. They also put clouds in the places where they are seen. When used to explore the effect of an increase in atmospheric greenhouse gases on the climate these models, which have been developed by different teams, all predict more warming than greenhouse gases and water-vapour feedback can supply unaided.
The models assessed for the IPCC’s fourth report had sensitivities ranging from 2.1ºC to 4.4ºC. The IPCC estimated that if clouds were not included, the range would be more like 1.7ºC to 2.1ºC. So in all the models clouds amplify warming, and in some the amplification is large.
However, there are so far no compelling data on how clouds are affecting warming in fact, as opposed to in models. Ray Pierrehumbert, a climate scientist at the University of Chicago who generally has a strong way with sceptics, is happy to agree that there might be processes by which clouds rein in, rather than exaggerate, greenhouse-warming effects, but adds that, so far, few have been suggested in any way that makes sense.
Last edited: