- May 7, 2005
- 5,161
- 32
- 86
Link
Conclusion:
Conclusion:
The Shanghai Opterons' higher clock speeds, larger and quicker L3 cache, and improved memory subsystem are just what the doctor ordered for AMD's quad-core CPU architecture. These changes, along with lower power consumption both at idle and while loaded, go a long way toward alleviating the weaknesses of the 65nm Barcelona Opterons. The Opteron 2384's ability to outperform the Xeon E5450 in SPECjbb is dramatic proof of Shanghai's potency. Similar server-class workloads are likely to benefit with Shanghai, as well, so long as they are properly NUMA-aware. Both in SPECjbb and in the more difficult case (for the Opteron) of the Cinema 4D renderer, we found our Opteron 2384-based system to be quantifiably superior in terms of power-efficient performance than Xeon systems that employ FB-DIMMs.
The new Opterons are clearly more competitive now, but they were still somewhat slower overall in the HPC- and workstation-oriented applications we tested, with the lone exception of MyriMatch. In many cases, Shanghai at 2.7GHz was slightly behind the Xeon L5430 at 2.66GHz. The Opteron does best when it's able to take advantage of its superior system architecture and native quad-core design, and it suffers most by comparison in applications that are more purely compute-bound, where the Xeons generally have both the IPC and clock frequency edge.
We should say a word here about Intel's San Clemente platform, which we paired with its low-voltage Xeons. It's a shame this platform isn't more of a mainstream affair, and it's a shame the memory controller is limited to only six DIMMs. Even with that limitation, San Clemente may be Intel's best 2P server platform. In concert with the Xeon L5430, it's even more power efficient than this first wave of Shanghai Opterons, and in several cases, the lower latency of DDR2 memory seemed to translate into a performance advantage over the Bensley platform in our tests. For servers that don't require large amounts of RAM, there's no better choice.
AMD argues that it has a window of opportunity at present, while its Shanghai Opterons are facing off in mainstream servers versus current Xeons. I would tentatively agree. For the right sort of application, an Opteron 2384-based system offers competitive performance and lower power draw than a Xeon E5450 system based on the Bensley platform. The Xeon lineup has other options with consistently higher performance or lower power consumption, but the Shanghai Opterons match up well against Intel's mainstream server offerings. (Workstations and HPC, of course, are another story.) If AMD can deliver on its plans for HyperTransport 3-enabled Opterons early next year, along with low-power HE and high-performance SE models, it may have a little time to regain lost ground in the server space before 2P versions of Nehalem arrive and the window slams shut.