This is one of the interesting points discussed in Nova's
The Elegant Universe (You can watch all three hours on the PBS website!)
It seems to me that the key difference between science and philosophy (religion) is that conjectures can be put to the test against reality -- and that this testing is never ending (as shown by recent experiments to verify predictions of relativity). Some people have suggested that the nature of string theory makes it impossible to test (i.e. it's a complete description of everything we already know without predicting anything measurable that we don't know). If so, then it would seem to be indistinguishable from philosophy. As string theory is fleshed out, I'm hoping that its proponents will discover ways to test it against reality and therefore prove it to be a theory of science (mind you, not necessiarly a completely correct theory).
Here's part of one interview from the PBS website:
NOVA: What would it take, do you think, to prove or confirm that string theory is right?
Peet: You can never prove that a theory of nature is correct. All you can prove is that it's the best theory you have that satisfies your theoretical consistency and describes the real world to the accuracy that we can test it. I'm not sure if we'll ever know whether a particular theory is the truth, because physics is an operational science. What we do is experiments, and we check our theoretical predictions against our experimental results. Once we've come up with a theory that agrees with the experimental results, we then try to predict something new that we haven't measured before. That's the process by which we keep refining our theories of nature.
It is always easier to falsify a theory than to prove it's correct. String theory, as yet, can't be falsified, partly because it is such a big structure. It's got so many ideas in it and incorporates so many new concepts, like extra dimensions and supersymmetry and unification, that at the moment, string theory is a flexible enough structure that it cannot be falsified.
NOVA: Then how do you respond to critics who say, "This is just not testable. It's not science."
Peet: String theorists worry a lot about whether our approach to understanding all of the forces and unification is the right track to be following. I think the best justification at present is that it's really, by far, the best approach to trying to understand the quantum theory of gravity. It's certainly better than taking Einstein's general relativity theory and trying to kludge it together with the standard model]. Just taking general relativity and the standard model, which is a quantum theory, doesn't enable you to calculate anything in extreme regimes deep inside black holes or back at the origin of the universe.
So it's the best we've got. And if it turns out that a part of it is not really the right way to be proceeding, what we'll find is that we'll need to add extra ideas or change our attack somewhat. But as scientists, all we can really do is work with the best theory that we've got and keep refining it as the experimental data keep coming in.
NOVA: How do you examine string theory experimentally?
Peet: Since string theory is a theory of extremely high-energy physics, one of the concerns one might have as a string theorist is: how will we really be able to give this theory a good run for its money and really test it out? The traditional way that high-energy physicists have tested theories is to make predictions about what happens in particle accelerators, because that was the most direct way that we could really crank up to very high energies and test our theories. So we can expect string theory and its predictions for low-energy physics to be tested inside accelerators. That's one of the reasons why string theorists are waiting keenly for what's going to come out of Run II at Fermilab and what happens at the Large Hadron Collider when it's finally up and running. [Editor's note: Run II at Fermilab began in March 2001. The Large Hadron Collider is now under construction at CERN on the Franco-Swiss border near Geneva.]
But there is another way of trying to test predictions of string theory, or whatever else might be the final theory describing the highest-energy physics that we can imagine. What that takes advantage of is the fact that the highest energies ever were in the big bang. So it's natural to try to take advantage of that cosmic experiment, even though there was only one experiment.
One of the ways that you can test theories of cosmology is to look at the background radiation that's left behind from the big bang. This is called the cosmic microwave background. It's currently very cold radiation, but back when the big bang was happening, it was extremely hot. It's thought that what was happening back at the big bang, or somewhat later, could imprint on that radiation that then came to us, eventually, as this very cold radiation.
There have been some experiments done already in cosmology that are really producing fantastic data, providing very precise measurements of not only the background radiation itself, but the fluctuations in that background radiation. For example, maybe the temperature in that region of the sky is a little bit colder than the temperature over there. People have been very carefully analyzing those little differences in the background radiation all over the sky to try to tell us about what was happening back much closer to the big bang.
This is really the decade of cosmological data. There are fantastic experiments that have already happened, and there are even more precise ones that are going to be bringing in data very soon. We've already got, from cosmological data, some very interesting information about the universe and the stuff that's in it that has really shaken up the string theory community, in terms of the ways that we try to build models of the real world.