Standard model needs rewrite ?

Status
Not open for further replies.
May 11, 2008
22,557
1,471
126
http://www.physorg.com/news196622753.html

According to new data found, the symmetrical model might need a rewrite.
I hope this is true and not a fault in the data because of data massage. :D

The two experiments -- MINOS and MiniBooNE -- in their own unique ways search for a phenomenon where one type, or flavor, of neutrino (there are three: electron, muon and tau) changes into another flavor while traveling through space. Previous experiments, including MINOS, have reported evidence for such transitions, the existence of which indirectly prove that the ghostly neutrinos have non-zero, albeit tiny, masses.

In the MINOS (Main Injector Neutrino Oscillation Search) experiment a proton beam is sent to a carbon target, creating subatomic particles that decay into muon neutrinos and antineutrinos. The beam is sent 735 kilometers through solid earth, first through a near particle detector at Fermi National Accelerator Laboratory (Fermilab) in Batavia, Ill., and then through a 5,000-ton far particle detector in Minnesota. Scientists then measure the rates that muon neutrinos and antineutrinos convert, respectively, to tau neutrinos and antineutrinos.

Providing critical contributions to the new result, and also one of the largest groups in the MINOS collaboration, is the Indiana University High Energy & Astroparticle Physics (HEAP) group led by IU faculty members Mark Messier, Stuart Mufson, Jon Urheim and James Musser.

Urheim, an associate professor of physics, has served as one of the organizers of the working group responsible for the new measurement, providing scientific leadership during the early stage analysis; Musser, a professor of physics, has for years directed the development of the software algorithms used to convert data into physically meaningful quantities; Messier, a professor of physics, led early development of the MINOS neutrino beam model and with IU graduate and post-doctoral students has refined and improved the model over time; Mufson, an astronomy professor, is leading the analysis effort looking for violations in the expected independence of the laws governing neutrino behavior with respect to speed and direction, which might be related to the new result. The IU group, including research scientist Chuck
Bower, also played key roles in the construction of MINOS.

The Standard Model of particle physics holds that particle and antiparticle masses should be equal, with no discrepancy in masses inferred from the energy scale at which the conversion process from muon to tau occurs separately for neutrinos and antineutrinos. But MINOS scientists found that not to be the case: the new results indicate that neutrino and antineutrino masses differ by about 40 percent.

"Interpreted as measurements of neutrino mass, the MINOS results give different values for neutrino and antineutrino masses," Urheim said. "Equivalence of particle and antiparticle masses is a fundamental underpinning of the well-tested Standard Model of particle physics. So, if the neutrino-antineutrino difference persists, it will necessitate a radical modification of our understanding of particle physics."

At the same time the new differences in neutrino and antineutrino behavior were being announced last week by the MINOS team, the group of MiniBooNE (Mini Booster Neutrino Experiment) scientists that includes IU associate professor of physics Rex Tayloe found muon antineutrinos turning into electron antineutrinos at a higher rate than expected. With a second discrepancy in neutrino oscillation (flavor change) uncovered, IU scientists realized the momentum building toward a reworking of the long-held Standard Model of particle physics.

"Both of these experiments indicate that neutrinos are behaving differently compared to the antineutrinos, and if either of these results hold up under further scrutiny, the implications are profound," said Tayloe, who works out of the IU Center for the Exploration of Energy and Matter (formerly the IU Cyclotron Facility). "It would likely help us to understand the imbalance of matter and anti-matter in the universe which, currently, defies explanation and is one of the 'holy grails' of current physics exploration."
 
Status
Not open for further replies.