http://anandtech.com/show/9766/the-apple-ipad-pro-review/4
"Relative to the MacBook, the iPad Pro does best in 445.gobmk, the Go benchmark, while its largest deficit is with 462.libquantum. The latter is a particularly interesting case as the benchmark is very easy to vectorize, giving us perhaps our best look at the vector performance of Twister versus Broadwell, and how well their respective compilers can actually vectorize it. The end result has the Intel platforms solidly in the lead here, hinting that Intel still has better vector performance at this time.
Shifting gears to the Asus ZenBook UX305CA and its newer Skylake based Core m3-6Y30, to little surprise Skylake closes the gap with A9X in the benchmarks where Core M was losing, and pulls further ahead in the benchmarks where it was winning. Despite this the two systems split the number of wins at 5 each, but in the cases where the ZenBook is winning it’s very clearly winning. Overall Skylake sees some decent performance improvements relative to the Broadwell CPU in our MacBook – with the exact gains depending on the test – allowing it to widen the gap compared to the A9X. Overall A9X is still competitive in specific scenarios, but on average it definitely trails the Skylake Core m3.
Finally, going back to Broadwell we have the ASUS Transformer Book T300 Chi, which incorporates a high-end Core M-5Y71 processor. This is still officially a 4.5W TDP processor, and as a result this essentially measures Broadwell Core M’s best case performance. With a maximum CPU clockspeed of 2.9GHz as compared to the slower low-end Skylake and Broadwell CPUs, the T300 Chi unsurprisingly beats the iPad Pro in every single benchmark. At best the two are neck-and-neck with Apple’s best benchmark, 445.gobmk, but otherwise it’s a clear and very significant lead for Intel’s fastest Broadwell Core M processor."
A good comparison of the fastest mobile SoCs on an industry standard benchmark SPEC INT 2006. Skylake/Broadwell is the clear winner and it could be due to those 256 bit AVX2 FP units which support 256 bit integer/floating point operations. Apple A9X is using 128 bit FP units. Anyway Apple is closing the gap rapidly and A10X at 10nm vs Kabylake 14nm Core M and A11X at 7nm vs Cannonlake 10nm Core M should be very interesting.
"Relative to the MacBook, the iPad Pro does best in 445.gobmk, the Go benchmark, while its largest deficit is with 462.libquantum. The latter is a particularly interesting case as the benchmark is very easy to vectorize, giving us perhaps our best look at the vector performance of Twister versus Broadwell, and how well their respective compilers can actually vectorize it. The end result has the Intel platforms solidly in the lead here, hinting that Intel still has better vector performance at this time.
Shifting gears to the Asus ZenBook UX305CA and its newer Skylake based Core m3-6Y30, to little surprise Skylake closes the gap with A9X in the benchmarks where Core M was losing, and pulls further ahead in the benchmarks where it was winning. Despite this the two systems split the number of wins at 5 each, but in the cases where the ZenBook is winning it’s very clearly winning. Overall Skylake sees some decent performance improvements relative to the Broadwell CPU in our MacBook – with the exact gains depending on the test – allowing it to widen the gap compared to the A9X. Overall A9X is still competitive in specific scenarios, but on average it definitely trails the Skylake Core m3.
Finally, going back to Broadwell we have the ASUS Transformer Book T300 Chi, which incorporates a high-end Core M-5Y71 processor. This is still officially a 4.5W TDP processor, and as a result this essentially measures Broadwell Core M’s best case performance. With a maximum CPU clockspeed of 2.9GHz as compared to the slower low-end Skylake and Broadwell CPUs, the T300 Chi unsurprisingly beats the iPad Pro in every single benchmark. At best the two are neck-and-neck with Apple’s best benchmark, 445.gobmk, but otherwise it’s a clear and very significant lead for Intel’s fastest Broadwell Core M processor."
A good comparison of the fastest mobile SoCs on an industry standard benchmark SPEC INT 2006. Skylake/Broadwell is the clear winner and it could be due to those 256 bit AVX2 FP units which support 256 bit integer/floating point operations. Apple A9X is using 128 bit FP units. Anyway Apple is closing the gap rapidly and A10X at 10nm vs Kabylake 14nm Core M and A11X at 7nm vs Cannonlake 10nm Core M should be very interesting.
Last edited: