David Kanter said:The improvements in Vmin from adaptive clocking are greatest when the Steamroller core is operating at high frequency (up to 9% lower Vmin at 4GHz). High frequency circuits are much more sensitive to power supply noise and stand to benefit more as a result. Figure 2 shows the benefits of the adaptive clocking system on power consumption for a desktop productization of Steamroller, with savings as high as 19%.
![]()
Figure 2. Power benefits from adaptive clocking
The cost of implementing adaptive clocking is quite low, especially given the significant power benefits. The area overhead for adaptive clocking is minimal; the droop detection and clock stretching circuits are approximately 0.2mm2, whereas a Streamroller module (i.e., two cores and a 2MB L2 cache) is 29.5mm2. The additional clock stretching circuitry does increase jitter by 0.5-1%, but only when the clock stretching is engaged and the core is already operating at a reduced frequency so there is no impact on peak frequency.
Really interesting article.
http://www.realworldtech.com/steamroller-clocking/
