Intel Takes 32 nm PMOS to Record Levels
Intel Corp. presented details on its 32 nm logic technology at the International Electron Devices Meeting (IEDM), reporting that its fourth-generation strain techniques have boosted the PMOS performance to a historic point. "For the first time, linear drive currents on the PMOS have overtaken NMOS," said Paul Packan, 32 and 15 nm technology programs manager.
For the oft-quoted saturated drive current, the 32 nm NMOS value remains higher, at 1.62 mA/μm Idsat compared with 1.37 mA/μm for the 32 nm PMOS transistor. Packan said the PMOS linear drive current (ldlin) reached 0.24 mA/μm, a 35% improvement over the 45 nm PMOS transistor. The NMOS device Idlin gained a 20% improvement, partly from a raised source-drain architecture, reaching a linear drive current of 0.231 mA/μm. Linear drive current is important because transistors rarely get to full saturation, making Idlin a meaningful metric for real-world device operation.
With NMOS and PMOS now in rough parity, designers can adjust the size of the PMOS transistors to their needs, said Mark Bohr, a senior fellow at Intel. "For many generations, there was a 2:1 ratio between the NMOS and PMOS," largely caused by inherently different mobilities between electrons and holes. "At the 32 nm generation, our saturation and linear drive currents are closer to being matched; we are getting very close." That means for the Westmere processor Intel designers could create circuits with smaller PMOS transistors in some cases, Bohr said.
http://www.semiconductor.net/article/439536-Intel_Takes_32_nm_PMOS_to_Record_Levels-full.php
If you look closely, the very reason Moore's Law exists is buried in the last sentence of the linked article