As funny as it sounds, the problem I am having in calculus right now is actually algebraic simplification. Allow me to explain with a problem:
The sum from n=1 to infinity of: ((2^k * k!)/K^-k))
I test convergence by applying the root test: An = ((2^n * n!)/n^-n))
lim A(n+1)/An =
n-> inf
2^(n+1) * (n+1)!
---------------------
(n+1)^-(n+1)
----------------------------
2^n * n!
-----------
n^-n
Fixing the fraction I get:
2^(n+1) * (n+1)! * n^-n
--------------------------------
2^n * n! * (n+1) ^-(n+1)
Before I can apply the limit I need to simplify more:
I cancel (n+1)!/n! to leave (n+1)
I cancel 2^(n+1)/2^n to leave 2
Thus I am left with:
2(n+1) * n^-n
--------------------------------
(n+1) ^- (n+1)
Now the question is, how do I cancel out n^-n/(n+1)^-(n+1)?
I tried looking at the sequence of n:
1^-1 2^-2 3^-3 ... n^-n
------------------------------
2^-2 3^-3 4^-4 .... n^-n (n+1)^-(n+1)
So I figure that if you cancel, you end up with 1/(n+1)^-(n+1)
How do I simplify that to solve for the limit to determine convergence?
The sum from n=1 to infinity of: ((2^k * k!)/K^-k))
I test convergence by applying the root test: An = ((2^n * n!)/n^-n))
lim A(n+1)/An =
n-> inf
2^(n+1) * (n+1)!
---------------------
(n+1)^-(n+1)
----------------------------
2^n * n!
-----------
n^-n
Fixing the fraction I get:
2^(n+1) * (n+1)! * n^-n
--------------------------------
2^n * n! * (n+1) ^-(n+1)
Before I can apply the limit I need to simplify more:
I cancel (n+1)!/n! to leave (n+1)
I cancel 2^(n+1)/2^n to leave 2
Thus I am left with:
2(n+1) * n^-n
--------------------------------
(n+1) ^- (n+1)
Now the question is, how do I cancel out n^-n/(n+1)^-(n+1)?
I tried looking at the sequence of n:
1^-1 2^-2 3^-3 ... n^-n
------------------------------
2^-2 3^-3 4^-4 .... n^-n (n+1)^-(n+1)
So I figure that if you cancel, you end up with 1/(n+1)^-(n+1)
How do I simplify that to solve for the limit to determine convergence?