- May 15, 2015
- 10,552
- 3,544
- 136
The idea of quantum consciousness has gotten a really bad rap from all of the mushy-brained, new-age babble it's inspired. But with the area of quantum biology starting to grow with insights into photosynthesis and magnetic navigation by birds and possibly mammals, the idea that quantum effects play a role in the mysterious nature of human consciousness isn't beyond the pale.
As the article noted below indicates, even a luminary such as Roger Penrose believes such effects may be responsible for consciousness. But he pins his hopes on the superposition of microtubules, something that most people in the field dismiss simply because they are too massive to maintain coherence.
However there is at least one other possibility that's discussed.
As the article noted below indicates, even a luminary such as Roger Penrose believes such effects may be responsible for consciousness. But he pins his hopes on the superposition of microtubules, something that most people in the field dismiss simply because they are too massive to maintain coherence.
However there is at least one other possibility that's discussed.
https://www.quantamagazine.org/20161102-quantum-neuroscience/That said, going from an intriguing hypothesis to actually demonstrating that quantum processing plays a role in the brain is a daunting challenge. The brain would need some mechanism for storing quantum information in qubits for sufficiently long times. There must be a mechanism for entangling multiple qubits, and that entanglement must then have some chemically feasible means of influencing how neurons fire in some way. There must also be some means of transporting quantum information stored in the qubits throughout the brain.
This is a tall order. Over the course of his five-year quest, Fisher has identified just one credible candidate for storing quantum information in the brain: phosphorus atoms, which are the only common biological element other than hydrogen with a spin of one-half, a low number that makes possible longer coherence times. Phosphorus can’t make a stable qubit on its own, but its coherence time can be extended further, according to Fisher, if you bind phosphorus with calcium ions to form clusters.
In 1975, Aaron Posner, a Cornell University scientist, noticed an odd clustering of calcium and phosphorous atoms in his X-rays of bone. He made drawings of the structure of those clusters: nine calcium atoms and six phosphorous atoms, later called “Posner molecules” in his honor. The clusters popped up again in the 2000s, when scientists simulating bone growth in artificial fluid noticed them floating in the fluid. Subsequent experiments found evidence of the clusters in the body. Fisher thinks that Posner molecules could serve as a natural qubit in the brain as well.
That’s the big picture scenario, but the devil is in the details that Fisher has spent the past few years hammering out. The process starts in the cell with a chemical compound called pyrophosphate. It is made of two phosphates bonded together — each composed of a phosphorus atom surrounded by multiple oxygen atoms with zero spin. The interaction between the spins of the phosphates causes them to become entangled. They can pair up in four different ways: Three of the configurations add up to a total spin of one (a “triplet” state that is only weakly entangled), but the fourth possibility produces a zero spin, or “singlet” state of maximum entanglement, which is crucial for quantum computing.
Next, enzymes break apart the entangled phosphates into two free phosphate ions. Crucially, these remain entangled even as they move apart. This process happens much more quickly, Fisher argues, with the singlet state. These ions can then combine in turn with calcium ions and oxygen atoms to become Posner molecules. Neither the calcium nor the oxygen atoms have a nuclear spin, preserving the one-half total spin crucial for lengthening coherence times. So those clusters protect the entangled pairs from outside interference so that they can maintain coherence for much longer periods of time — Fisher roughly estimates it might last for hours, days or even weeks.
In this way, the entanglement can be distributed over fairly long distances in the brain, influencing the release of neurotransmitters and the firing of synapses between neurons — spooky action at work in the brain.
